RNP RNAV Approach with Airbus
Contents

- The advantages of RNAV approaches
- Types of RNAV approaches
- RNP RNAV with RNP<0.3
- Operational Approval
- SAAAR type of operation
- SAFETY in Mountainous operation
- CONCLUSION
The Advantages of RNAV Approaches

- Approach on runway axis
- Final descent at a constant Flight Path Angle
- Stabilized approach leading 50 ft above runway threshold
- Accuracy of navigation
The Advantages of RNAV Approaches

• All Airbus with an FMS and GPS are capable to fly such RNAV Approaches

• Since mid-80’s Airbus promotes a constant slope NPA rather than step-down ("dive and drive") procedures

• All Airbus with FMS 2 can fly in addition RF legs
Types of RNAV Approaches

- RNAV (GPS) “Sensor related”
- RNP RNAV “Performance related”
 - DH as low as 250 ft AGL with APP NAV/FINAL (LNAV/VNAV) guidance

A lot of destinations could benefit from the implementation of Instrument Approach Procedures published under ICAO PANS OPS (or TERPS) criteria. A large part of the Airbus world fleets can fly these Instrument Approach Procedures.
Sensor related : RNAV Approaches

Typical “public” RNAV Approach PANS OPS

Sensor related : RNAV Approaches

Typical “public” RNAV Approach PANS OPS
The Required Navigation Performance concept was initially documented by ICAO

- RNP RNAV Procedures - ICAO PANS OPS
 - RNP 0.3,
 - Straight final segment

On many destinations, opportunities exist in Approach and Missed Approach

- For Lower RNP values
- For Curved Approaches / Missed Approaches
International standardisation - Current Situation and Perspectives

Different possibilities:

- **UNITED STATES/FAA**
 - Federal Aviation Administration (FAA) approach is based on a “case by case” method, based on National operational approval organisations (SAAAR process: Special Aircrew and Aircraft Authorization Required)
 - **FAA SAAAR Notice 8000.287** exists for **Private SAAAR**: the most demanding.
 - FAA objective: to adapt this Notice to **Public RNP SAAAR** procedures
 - Public criteria for **procedure design** included in **FAA Order 8260.RNP SAAAR**
 - Aircraft evaluation and Operator approval requirements being published in **Advisory Circular - AC 90-RNP SAAAR**: more standardized, less flexible

AIRBUS is compliant with the most demanding regulation available.
International standardisation - Current Situation and Perspectives

- **ICAO**
 - Europe rely on existing **ICAO** RNP RNAV Procedure for Air Navigation Services operations (PANS OPS) available for Straight In / RNP 0.3
 - Today, no RNP<0.3 criteria published for procedure design
 - Current criteria are based on national certification criteria, need for world-wide harmonization:
 - Europe supports ICAO RNP SORSG meetings

- **Objective:** to standardize a new approach type for RNP < 0.3

- **EASA**
 - European Aviation Safety Agency (**EASA**) approach aims standardisation across European countries and harmonization with FAA
 - **AMC20-XZ** in progress
 - Includes aircraft and operational criteria
 - Equivalent to the FAA AC
 - Objective is the harmonisation of RNP SAAAR
Airbus RNP<0.3 project status

- Airbus global RNP project aims at achieving RNP 0.10 certification with the EASA and the FAA
 - Initially with a specific set of equipment
 - Ultimately with any Airbus suppliers’ latest generation equipment

- RNP 0.15 achieved S1 2005 on A320 family (except A321) with ANZ configuration
 - FMS2 Honeywell, Honeywell ADIRU High Step1, MMR Collins

- RNP 0.10 targeted on all SA family before end ’05 with ANZ configuration

- First RNP<0.3 certification for the Long Range Aircraft family is planned S1 2006
 - A330:
 - Honeywell FMS2, Honeywell ADIRU (HIGH step1), all MMR
RNP<0.3 Certification

OPERATIONAL ASSUMPTIONS

- AP ON in FINAL APP mode
- Two systems to start the approach
- GPS PRIMARY available
- HIGH ACCURACY
- TF and RF F-PLN legs only
- WGS 84 geodesic system

FTE withstands:

- Winds up to 60kt all directions
- Wide range of IAS, Altitude, Weight, CG,.....
- Radius of turn as low as 0.8 NM
Performance demonstrated:

Navigation System Error (NSE_XTK 95%) = 0.03
Flight Technical Error (FTE 95%) = 0.07
Total System Error (TSE 95%) = 0.08

TSE = √(NSE² + FTE²)

Better than the target (RNP 0.1)

Pilot interface to monitor the FTE:
• Lateral Deviation on PFD
• XTK error on ND with improved resolution

FTE [Flight Technical Error], also called XTE [Cross Track Error] or LAT DEV [Lateral Deviation]
Airbus A/C provides Real time monitoring of current Navigation performance:

- Position Estimation: “GPS PRIMARY” and accuracy monitoring (EPE versus RNP)

- FTE: Pilot interface to monitor the Path Steering Error

(Upgrade of LCD Display software necessary)
“GPS PRIMARY” (white) message on ND

MCDU PROG Page

GPS PRIMARY

EPE: Estimated Position Error
[The EPE is a conservative value of the NSE computed by the FMGS]

RNP: Required Navigation Performance

“GPS PRIMARY” (white) message in MCDU scratchpad

ACCURACY assessment: HIGH needed;
[LOW when EPE> required RNP]
Position Estimation monitoring - WARNINGS

- "GPS PRIMARY LOST" on ND (not pilot clearable)
- "GPS PRIMARY LOST" message in MCDU scratchpad
- Aural triple click during a non-precision approach
Path Steering Error monitoring (mandated for RNP<0.3)

New Lateral Deviation Indication:
- L/DEV displayed on PFD
- Available
 - in approach with same display logic as V/DEV:
 - FINAL APP (armed or engaged) or FM Approach phase
 - during Go-Around

• Scale: 1 dot = 0.1 NM
• Same symbology as the V/DEV

Lateral deviation box representing the computed flight plan

Graduation every 0.1NM
Path Steering Error monitoring (mandated for RNP<0.3)

XTK Error:
• Resolution to the hundredth of NM
• Below 0.2 NM of XTKE and below Transition Altitude
Operational Approval

- Generic Approval for RNP 0.3 RNAV (PANS OPS)
 - Navigation Database Integrity
 - Crew Procedures
 - FCOM SOP
 - Dispatch Requirements
 - Crew Training
 - Briefing on RNP RNAV
 - Navigation system knowledge (learned during Type Rating)
 - Use of RNAV navigation system (learned during Type Rating)
 - Training on FINAL APP mode
 - Documentation update
RNP SAAAR benefits:

- Reduce minima in mountainous area
- Provides a stabilized automated way to fly what was a hand-flown curved path final
- More efficient and Predictable Air Traffic Management:
 - De-conflicting adjacent airports
 - Better access to simultaneous parallel runway or converging runway approaches
- Optimize noise abatement procedures in sensitive areas

RNP SAAAR constraints:

- Operational evaluation of each instrument procedure
- Special flight crew training
- Specific operational approval
- Today, National Authorities need to adopt FAA SAAAR criteria or develop their own regulation: Need for harmonization
RNP SAAAR implementation Project

AIRBUS
RNAV-RNP< 0.3
Certification
with
EASA/ FAA

AIRLINE
Operational Approval
with the support of Airbus and the Procedure Designer

Approach Procedure Designer

• Aircraft performance
• Fly-ability checks
• Flight crew procedures
• Crew training
• Documentation

• Approach design
• Approach charts
• Nav. Database coding
• Nav. Database integrity
• Procedure maintenance
RNP RNAV Operational benefits – Improving safety

JetBlue - New York JFK - A320

“Provides a stabilized automated way to fly what was a hand-flown curved path final with reference to lead-in lights and other visual cues.”
Evaluation of minima reduction at Lhasa with RNP RNAV procedures: RNP 0.3

- RNP RNAV RWY09
- DA preliminary evaluation:
 - Visual (wide circling in the parallel valley)
 - Current DA = 16404’ (5000m)
 - Current DH = 4701’ (1433m)
 - RNP 0.30
 - DA = 12605’ (3842m)
 - DH = 900’ (274m)
Evaluation of minima reduction at Lhasa with RNP RNAV procedures

- RNP RNAV RWY27
- DA preliminary evaluation:
 - Current
 DA = 13779’ (4200m)
 DH = 2076’ (633m)
 - RNP 0.30
 DA = 12618’ (3846m)
 DH = 927’ (282m)
RNP RNAV Operational benefits – Reducing minima

ANZ RNP RNAV RWY05 approach at Queenstown – A320

Minima reduced from 3500ft AGL to 270ft with RNP 0.15
PROCEDURE ASSESSMENT

Fly-ability check in the simulator

- Check that FM assumptions are taken into account in the design of the proposed instrument procedures:
 - Check that FTE (Flight Technical Error) performance is in line with certification objectives,
 - Perform tests under various wind conditions
 - Determine airspeed and wind limitations if required
 - Evaluate EGPWS behavior
- Modify the design of the approach procedures
- Define specific crew procedures in addition to SOP for RNAV
- Define mitigation means (EGPWS)
Determination of specific crew procedures

- Based on certification data, Airworthiness Compliance Document, approach designer data and simulator tests, definition of:
 - Additional procedure steps to the SOP for RNAV approach
 - Navigation monitoring procedures
 - GA procedure
 - Relevant contingency procedures in case of:
 - Engine failure
 - Navigation performance degradation
 - Loss of AP
 - Dispatch requirements
 - Weather minima at alternate airport
 - Minimum Equipment List
Design Specific Flight Crew Procedures

- APPR SPD 160 CONF 2
- L/G DOWN CONF 3
- F SPD
- CONF FULL Vapp
- GA
- ACC
- FINAL APP
- Note: QN250 is co-located with NV VOR

9800'
Operational Documentation Update

● Airbus documentation:
 ‣ Flight Manual
 ‣ RNP 0.X Airworthiness compliance document (SAAAR capability)
 ‣ FCOM

● Airbus supports the airline in the development of:
 ‣ Crew briefing on RNP 0.X RNAV, SAAAR operations and navigation system capability,
 ‣ Draft of specific RNP RNAV procedures to update the airline’s Operations Manual
 ‣ Performance take off charts
Aircraft Airworthiness Approval

- RNP 0.X Airworthiness compliance document (SAAAR capability)
 - Aims to be used by Operators to support operational approval
 - Provides all relevant information for safe operation of RNP 0.X

SAAAR:
- Summarizes:
 - Airworthiness Assessment ➔ JAR 25 Certified Navigation Capability
 - Assumptions & Limitations that should be considered in the operational evaluation
 - Assumptions & Limitations that should be considered for the instrument approach procedure design
Crew training

• Ground training basic knowledge:
 ▶ RNAV (FMGS) system known since Type Rating
 ▶ Briefing on RNP RNAV and SAAAR procedures
 ▶ Briefing on special destination procedures and limitations

• Simulator training
 ▶ Fly approaches including GA
 ▶ Fly departures AEO and OEI
 ▶ Review contingencies procedures
 ▶ Review navigation monitoring

• Flying first approach under supervision
Operational demonstration to the Authorities

- The objectives are to demonstrate:
 - The navigation system capability,
 - The adequacy of approach procedure design,
 - The adequacy of the airline’s crew procedures and training

- The demonstration should include:
 - Simulator sessions in airline environment
 - Demonstration flight in VMC

✓ retrofit of the aircraft could be needed depending on required RNP and desired configuration (LAT DEV, EGPWS using GPS position)
✓ Specific DMU programming needed for flight analysis
Operational approval

- The airline will apply for operational approval
- Airbus will assist the airline in preparing its application for operational approval and will support the airline to meet the Authorities’ requirements in the area of:
 - Demonstration of the certified aircraft capability
 - FM
 - RNP 0.X Airworthiness compliance document (SAAAR capability)
 - Substantiation of specific crew procedures
 - Minimum equipment list
- The airline should also expect to address other topics such as:
 - Approach and SID’s design justification (with procedure designer)
 - Navigation database integrity checks
 - Mitigation means (EGPWS,..)
 - Revisions of Operations Manuals
 - Crew training
Airbus deliverables

- Crew procedures for desired airport
- RNP 0.X Airworthiness compliance document (SAAAR capability)
- MEL for RNP approach operations
- RNP approach procedures – a briefing for pilots
- Service Bulletins (if required)
SAFETY in Mountainous operation

Mountainous operation

- Proactive safety: Performance based navigation: **RNP**
- Reactive safety: emphasizes the AIRBUS Fly-By-Wire concept:

 - **Full Flight Envelope Protections**
 - Stall Protection (Alpha Floor Protection)
 - Over speed Protection
 - Protection against Unusual Attitudes (Pitch / Bank)

 - Instinctive reactions in extreme flight situations possible
 - Wind shear recovery maneuver
 - CFIT escape maneuver (EGPWS)
HOW DOES AIRBUS ENHANCE SAFETY?
FBW - CFIT escape trajectory summary

```
<table>
<thead>
<tr>
<th>Distance (ft)</th>
<th>Altitude (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>-50</td>
</tr>
<tr>
<td>1000</td>
<td>-100</td>
</tr>
<tr>
<td>1500</td>
<td>Initial Altitude</td>
</tr>
<tr>
<td>2000</td>
<td>Protected FBW</td>
</tr>
<tr>
<td>2500</td>
<td>Non-protected FBW</td>
</tr>
<tr>
<td>3000</td>
<td></td>
</tr>
</tbody>
</table>
```

Initial Conditions:
- Non protected: Gw - Cg unknown
- Landing config: V/S = -1500 ft/min
- Protected aircraft: MLW - aft Cg - Vref+5
- Non protected: Gw - Cg unknown

“TERRAIN - PULL-UP”
HOW DOES AIRBUS ENHANCE SAFETY?

- Full profit of Performance based navigation (RNP):
 - The NPAs and RNAV approaches can be flown the way pilots are used to fly everyday,
 - Final descent at a constant Flight Path Angle
 - Improved flight crew standardization and Reduction in training needs
 - Less circling approaches
 - Provision of containment throughout the operation with associated cockpit alerts
RNP RNAV: Conclusion

✓ Airbus firmly believes in the operational benefits of RNP RNAV implementation and has incorporated RNP 0.3 capability as standard on all GPS equipped aircraft
 ‣ offer the option of RNP 0.15 on A320 family (exc. A321, coming soon)
 ‣ is pursuing a robust schedule of pilot RNP projects to achieve RNP 0.10 on Single Aisle family and Long Range aircraft.
✓ RNP is fully taken into consideration in the Airbus RNP Roadmap:
 ✓ aircraft configurations
 ✓ Regulatory framework
✓ Airbus is already involved in RNP SAAAR projects with several Airlines
CONCLUSION (Ctd)

✓ Airbus aircraft are or will be compliant with RNP RNAV regulations (existing and under development)

✓ Airbus is involved in the regulations definitions, with both the FAA and the EASA

✓ Airbus will anticipate the future developments of RNP RNAV Operations to optimize the Airbus aircraft capabilities

✓ Airbus recommends EGPWS using GPS referenced position and Lateral Deviation indication (although not mandatory for RNP 0.3)
A 380 AIRBORNE!

Thank you
This document and all information contained herein is the sole property of AIRBUS S.A.S. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.